

Solución a evaluación 1

Introducción a la Matemática Universitaria - 520145

1) (10P) Sean p, q y r proposiciones lógicas. Demuestre que

$$[p \to (q \lor r)] \Leftrightarrow [(p \land \sim q) \to r].$$

Solución:

Variante 1:

$$\begin{split} (p \to q \lor r) \Leftrightarrow \sim p \lor (q \lor r), \\ \Leftrightarrow (\sim p \lor q) \lor r, \\ \Leftrightarrow (\sim p \lor \sim (\sim q)) \lor r, \\ \Leftrightarrow \sim (p \land \sim q) \lor r, \\ \Leftrightarrow p \land \sim q \to r. \end{split}$$

Variante 2:

La propiedad a probar es equivalente a probar que la proposición $[p \to (q \lor r)] \leftrightarrow [(p \land \sim q) \to r]$ es tautología. Para verificarlo, construyamos la tabla de verdad asociada a ella.

p	q	r	$q \vee r$	$p \to (q \lor r)$	$p \land \sim q$	$(p \land \sim q) \to r$	$[p \to (q \lor r)] \leftrightarrow [(p \land \sim q) \to r]$
V	V	V	V	V	F	V	V
V	F	V	V	V	V	V	V
F	V	V	V	V	F	V	V
F	F	V	V	V	F	V	V
V	V	F	V	V	F	V	V
V	F	F	F	F	V	F	V
F	V	F	V	V	F	V	V
F	F	F	F	V	F	V	V

En la tabla anterior se observa que la proposición a analizar es V para cualquier combinación de valores de verdad de las proposiciones que la forman. Esto significa que ella es tautología.

2) (15P) Considere las siguientes proposiciones lógicas

$$\mathbf{p}:\exists\,x\in\mathbb{R}\ :\ \forall\,y\in\mathbb{R}\ :\ x+y=1\qquad \qquad \mathbf{q}:\forall\,x\in\mathbb{R}\ :\ \exists\,y\in\mathbb{R}\ :\ x+y=1.$$

- 2.1) Escriba la negación de p.
- 2.2) Determine los valores de verdad de p y q. Justifique sus respuestas.

Solución:

$$\mathbf{2.1}) \sim \mathbf{p} \Leftrightarrow \forall x \in \mathbb{R} : \exists y \in \mathbb{R} : x + y \neq 1$$
 (5P)

Trimestre 1, 2015, UdeC

2.2) La proposición \mathbf{p} es falsa. Para justificarlo, veamos que $\sim \mathbf{p}$ es verdadera. Dado un $x \in \mathbb{R}$, existe $y \in \mathbb{R}$, por ejemplo, y = 2 - x, tal que $x + y = x + (2 - x) = 2 \neq 1$. (6P) La proposición \mathbf{q} es verdadera. Para cada $x \in \mathbb{R}$, existe $y \in \mathbb{R}$, por ejemplo, y = 1 - x tal que x + y = x + (1 - x) = 1.

3) (15P) Sean A y B conjuntos cualesquiera. Demuestre que $A - (A - B) = A \cap B$. Solución:

Variante 1:

$$A-(A-B)=A-(A\cap B^c),$$
 porque $A-B=A\cap B^c$ para cualquier par de conjuntos A,B

$$=A\cap (A\cap B^c)^c,$$
 usando misma propiedad anterior
$$=A\cap (A^c\cup B),$$
 por Morgan y porque para todo conjunto A se cumple que $(A^c)^c=A$

$$=(A\cap A^c)\cup (A\cap B),$$
 por distributividad
$$=\emptyset\cup (A\cap B),$$
 para cualquier conjunto A se cumple que $A\cap A^c=\emptyset$

$$=A\cap B,$$
 porque la unión del conjunto vacío con cualquier conjunto A es A .

Variante 2:

Si \mathcal{U} denota al conjunto universo, debemos probar que $\forall x \in \mathcal{U}$ se cumple

$$x \in A - (A - B) \Leftrightarrow x \in A \cap B.$$

$$x \in A - (A - B) \Leftrightarrow (x \in A) \land \sim (x \in A - B), \qquad \text{por definición de diferencia entre conjuntos}$$

$$\Leftrightarrow (x \in A) \land \sim (x \in A \land x \notin B), \qquad \text{usando misma propiedad anterior}$$

$$\Leftrightarrow (x \in A) \land ((x \notin A) \lor x \in B), \qquad \text{por Morgan}$$

$$\Leftrightarrow ((x \in A) \land (x \notin A)) \lor (x \in A \land x \in B), \qquad \text{por distributividad}$$

$$\Leftrightarrow F \lor (x \in A \land x \in B), \qquad \text{porque } p \land \sim p \Leftrightarrow F$$

$$\Leftrightarrow x \in A \land x \in B, \qquad \text{porque } p \lor F \Leftrightarrow p,$$

$$\Leftrightarrow x \in A \cap B, \qquad \text{por definición de intersección entre conjuntos}$$

4) (20P) Determine para qué valores de $x \in \mathbb{R}$ se satisfacen las siguientes desigualdades

4.1
$$\frac{x}{1-x} > x$$
, **4.2** $|x-2| \ge 3-x$.

Solución:

4.1)

$$\begin{split} \frac{x}{1-x} > x &\Leftrightarrow \frac{x}{1-x} - x > 0, \\ &\Leftrightarrow \frac{x-x(1-x)}{1-x} > 0, \\ &\Leftrightarrow \frac{x^2}{1-x} > 0 \end{split}$$

Dado que para cualquier $x \in \mathbb{R} - \{0\}$ se cumple que $x^2 > 0$, la desigualdad anterior es cierta si $x \neq 0$ y 1 - x > 0, es decir, si $x \neq 0$ y x < 1. El conjunto solución de esta inecuación es, por tanto,

$$S = \{x \in \mathbb{R} : x < 1 \land x \neq 0\} =]-\infty, 1[-\{0\}.$$

4.2) Variante 1:

Si $x-2 \ge 0$, la inecuación dada es equivalente a

$$x-2 \ge 3-x \Leftrightarrow 2x \ge 5 \Leftrightarrow x \ge \frac{5}{2}$$
.

Es decir, todo $x \ge \frac{5}{2}$ satisface $|x-2| \ge 3-x$.

Si x-2 < 0, la inecuación dada es equivalente a

$$2 - x \ge 3 - x \Leftrightarrow 2 \ge 3$$

lo cual es falso, por tanto, ningún x < 2 satisface la inecuación.

El conjunto solución de la inecuación dada es entonces

$$S = \left\{ x \in \mathbb{R} : x \ge \frac{5}{2} \right\} = \left[\frac{5}{2}, +\infty \right].$$

Variante 2:

Dado que para cualquier número real x se cumple que $|x| \ge 0$, los valores de $x \in \mathbb{R}$ para los cuales 3 - x < 0 son solución de la inecuación dada.

Analicemos para qué valores de $x \in \mathbb{R} : x \leq 3$ se cumple que $|x-2| \geq 3-x$, para estos valores se tiene que

$$|x-2| \geq 3-x \Leftrightarrow (x-2 \geq 3-x) \ \lor \ (x-2 \leq x-3) \Leftrightarrow \left(x \geq \frac{5}{2}\right) \ \lor \ (-2 \leq -3) \Leftrightarrow x \geq \frac{5}{2},$$

por tanto,

$$S =]3, +\infty[\cup\left(]-\infty, \, 3] \cap \left[\frac{5}{2}, \, +\infty\right[\right) = \left[\frac{5}{2}, \, +\infty\right[\right].$$

3